KRISTALL- UND MOLEKÜLSTRUKTUR VON o-ETHINYLPHENYLETHINYL ISOTHIOCYANATO-*trans*-BIS(TRIETHYLPHOSPHIN)-PALLADIUM(II), [Pd(NCS)(PEt_3)_2-o-C=CC₆H₄C=CH]

U. BEHRENS * und K. HOFFMANN

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, D 2000 Hamburg 13, Martin-Luther-King-Platz 6 (B.R.D.)

(Eingegangen den 10. September 1976)

Summary

A single-crystal X-ray diffraction study of the title compound has been done. Coordination around the palladium atom is approximately square planar. The Pd—ligand bond lengths are: Pd—P 2.324(2) and 2.301(2), Pd—N 2.025(7), Pd—C 1.952(7) Å. The Pd—C distance is only 0.04 Å shorter than a single bond. Crystal data: space group $P2_1/c$; a = 11.633(6), b = 12.911(6), c = 18.270(10) Å, $\beta = 103.20(2)^\circ$; Z = 4. The structure has been refined anisotropically to R = 0.044with 2332 reflections $[F_o > 3\sigma(F_o)]$.

Zusammenfassung

Es wurde eine Einkristall-Strukturuntersuchung der Titelverbindung durchgeführt. Das Palladiumatom ist annähernd quadratisch-planar koordiniert. Die Pd—Ligand-Bindungslängen betragen: Pd—P 2.324(2) und 2.301(2), Pd—N 2.025(7), Pd—C 1.952(7) Å. Der Pd—C-Abstand ist nur unwesentlich kürzer (0.04 Å) als der in einer Einfachbindung. Kristalldaten: Raumgruppe $P2_1/c$; $a = 11.633(6), b = 12.911(6), c = 18.270(10) Å; \beta = 103.20(2)^\circ; Z = 4$. Die Struktur konvergierte mit 2332 Reflexen $[F_0 > 3\sigma(F_0)]$ anisotrop gegen einen R-Wert von 0.044.

Einführung

Von Nast und Mitarbeitern sind durch Umsetzung von ortho- und para-Diethinylbenzol bzw. deren Alkalisalzen mit Verbindungen der Übergangsmetalle zahlreiche Komplexverbindungen dargestellt worden [1-7]. Aus trans-[Pd(PEt₃)₂-Br₂] und ortho-Diethinylbenzol (ODBH₂) in flüssigem Ammoniak entsteht eine Komplexverbindung des Typs trans-[Pd(PEt₃)₂(Br)(ODBH)], in der der Ligand Br⁻ durch andere negativ geladene Atomgruppen (z.B. NCS⁻, CN⁻) ausgetauscht werden kann [6].

Durch eine Röntgenstrukturuntersuchung am [Pd(PEt₃)₂(NCS)(ODBH)] sollten folgende Fragen geklärt werden:

- Es sollte die Struktur von Verbindungen des Typs [Pd(PEt₃)₂(X)(ODBH)] gesichert werden. Gleichzeitig wurde hierbei erstmalig ein Alkinyl-Palladium-Komplex röntgenographisch untersucht.
- 2. Es sollte geklärt werden, ob eine koplanare Anordnung von Benzolring und Koordinationsebene am Palladium vorhanden ist.
- 3. Es sollte geprüft werden, ob der Komplex als Thiocyanato- oder Isothiocyanato-Verbindung vorliegt.
- 4. Es sollte geklärt werden, ob im festen Zustand eine Wasserstoffbrückenbindung zwischen der freien Ethinylgruppe und dem Schwefelatom der Thiocyanatogruppe vorliegt, was auf Grund von Festkörperinfrarotspektren angenommen worden war [6].

Experimentelles

Einkristalle * der Titelverbindung wurden durch Abkühlen einer in Äther gesättigten Lösung des Komplexes erhalten. Filmaufnahmen zeigten, dass die Kristalle dem monoklinen Kristallsystem angehören mit den systematischen Auslöschungen: h0l : l = 2n + 1; 0k0 : k = 2n + 1. Dies führt eindeutig zur Raumgruppe $P2_1/c$ (C_{2h}^5 , No. 14). Die kristallographischen Daten sind in Tab. 1 aufgeführt.

Zur Sammlung der integrierten Intensitäten wurde ein Kristall der Grösse $0.4 \times 0.4 \times 0.3$ mm auf einem automatischen Vierkreis-Einkristall-Diffraktometer (Hilger-Watts) bis zu einem maximalen Beugungswinkel von θ 25° nach der $\theta/2\theta$ -Scan-Technik vermessen. Eine Zersetzung im Röntgenstrahl wurde nicht beobachtet.

Die Umwandlung der integrierten Intensitäten in Strukturfaktoren geschah

Summenformel	C73H35NP2PdS	
Molmasse	525	
Raumgruppe	P21/c	
Moleküle/Zelle	4	
Berechnete Dichte	1.244 g cm ⁻³	
Linearer Absorptionskoeffizient [Mo Ka]	8.6 cm ⁻¹	
Zellkonstanten a		
a .	11.633(6) Å	
ь	12.911(6) Å	
c	18.270(10) Å	
ß	103.20(2)°	
Zellvolumen	2672 Å ³	

TABELLE 1

KRISTALLDATEN

^a Messtemperatur 18°C, Mo-K_a, $\lambda = 0.70926$ Å.

* Die Züchtung des Einkristalls wurde von Herm Dipl. Chem. Dr. V. Pank (Universität Hamburg) vorgenommen.

Fig. 1. Schematische Darstellung von o-Ethinylphenylethinyl-isothiocyanato-trans-bis(triethylphosphin)palladium(II).

mit Hilfe des Programms ALDASO [8]. Eine Absorptionskorrektur wurde nicht vorgenommen. Insgesamt wurden 2332 symmetrieunabhängige Reflexe mit $F_o > 3\sigma(F_o)$ erhalten.

Lösung und Verfeinerung der Struktur

Die interatomaren Vektoren zwischen den Palladiumatomen konnten in der dreidimensionalen Pattersonsynthese (Programm FOUR [9]) lokalisiert und die Pd-Koordinaten berechnet werden. Aus nachfolgenden Fouriersynthesen [Programm FOUR] konnten die restlichen Atomlagen entnommen werden.

Die Struktur wurde anisotrop nach der Methode der kleinsten Fehlerquadrate (Programm ORXFLS3 [10]) verfeinert, wobei die Summe von $(F_o - F_c)^2$ mini-

Fig. 2. Die Molekülstruktur mit Angabe der Nummerierung der Atome. Die Ellipsoide der thermischen Bewegung stellen den Bereich 50%iger Aufenthaltswahrscheinlichkeit des jeweiligen Atoms dar.

Fig. 3. Die Anordnung der Moleküle in der Elementarzelle.

malisiert wurde. Wasserstoffatomlagen wurden nicht bestimmt. Der abschliessende R-Wert beträgt 0.044 für 2332 signifikante Reflexe.

Beschreibung der Molekülstruktur

Die Molekülstruktur ist in Fig. 1 und 2 dargestellt. Die Anordnung der Moleküle in der Elementarzelle zeigt Fig. 3. Atomparameter, Temperaturfaktoren,

Fig. 4. Bindungsabstände im Molekül.

Fig. 5. Intermolekulare Wasserstoffbindung.

Pd—Ligand	Berechneter Einfach- bindungsabstand (Å)	Gemessener Abstand (Å)	Verkürzung (Å)
Pd-P(1)	2.36	2.324(2)	0.04
PdP(2)	2.36	2,301(2)	0.06
Pd—N	1.96	2.025(7)	-0.06
Pd—C(1)	1.99	1.952(7)	0.04

TABELLE 2 VERKÜRZUNG DER PALLADIUM-LIGAND-BINDUNGEN

interatomare Abstände, Valenzwinkel und LSQ-Ebenen sind in den Tabellen 3-7 aufgeführt. Fig. 4 zeigt die Bindungslängen der asymmetrischen Einheit und Tab. 2 die Verkürzungen in den Palladium-Ligand-Bindungen.

Das Palladiumatom ist annähernd quadratisch von zwei *trans*-ständigen Triethylphosphinliganden, einem über N gebundenen Thiocyanatoliganden und einer Acetylidgruppe umgeben. Es liegt in der Ebene seiner Ligandenatome (Tab. 7). Um die Bindungsverkürzungen (π -Bindungsanteile) in den Metall-Ligand-Bindungen zu berechnen, müssen zum Einfachbindungsradius des Palladiumatoms (1.30 Å) [11] die Einfachbindungsradien vom Phosphor (sp^3 -hybridisiert,

TABELLE 3

ATOMPARAMETER MIT STANDARDABWEICHUNGEN

Atom	x	У	Z	
Pd	0.26068(4)	0.50435(4)	0.69505(3)	
P(1)	0.4379(2)	0.5708(2)	0.6772(1)	
P(2)	0.0815(1)	0.4388(1)	0.7062(1)	
S	0.2876(2)	0.7686(2)	0.8790(2)	
N	0.2583(5)	0.6211(5)	0.7687(4)	
C(1)	0.2655(5)	0.3887(5)	0.6269(4)	
C(2)	0.2655(5)	0.3141(5)	0.5879(4)	
C(3)	0.2787(5)	0.2227(5)	0.5438(4)	
C(4)	0.3879(6)	0.2026(6)	0.5275(5)	
C(5)	0.4005(7)	0.1140(6)	0.4863(5)	
C(6)	0.3121(7)	0.0444(6)	0.4659(5)	
C(7)	0.2027(8)	0.0644(6)	0.4828(5)	
C(8)	0.1861(6)	0.1565(6)	0.5221(5)	
C(9)	0.0740(7)	0.1732(6)	0.5379(5)	
C(10)	-0.0240(8)	0.1840(7)	0.5486(6)	
C(11)	0.2698(5)	0.6825(5)	0.8149(4)	
C(12)	0.5072(9)	0.4960(11)	0.6128(7)	
C(13)	0.6272(14)	0.5511(16)	0.6022(12)	
C(14)	0.5492(10)	0.5848(11)	0.7656(9)	
C(15)	0.5755(18)	0.4878(24)	0.8083(16)	
C(16)	0.4202(13)	0.7043(12)	0.6474(12)	
C(17)	0.3166(20)	0.7286(22)	0.5858(16)	
C(18)	0.0826(9)	0.3011(10)	0.7288(8)	
C(19)	0.1748(14)	0.2746(14)	0.7968(12)	
C(20)	0.0233(9)	0.5092(2)	0.7781(6)	
C(21)	-0.0917(16)	0.4591(18)	0.7943(12)	
C(22)	0.0310(9)	0.4515(9)	0.6181(8)	
C(23)	-0.0358(16)	0.5670(14)	0.5863(10)	

278

TABELLE 4

TEMPERATURFAKTOREN (X 10⁴)

Der anisotrope Temperaturfaktor ist definiert durch:

$e_{xx} = (\beta_{1,1}h^2 + \beta_{2,2}k^2 + \beta_{3,2}l)$	2+	$2\beta_{12}hk$	÷	$2\beta_{13}hl$	+	$2\beta_{2,3}kl$
---	----	-----------------	---	-----------------	---	------------------

Atom	β ₁₁	β ₂₂	β33	β12	β13	β23
Pđ	107(1)	64(1)	52(1)		18(1)	-9(1)
P(1)	115(2)	75(2)	58(1)	-21(1)	24(1)	-5(1)
P(2)	88(2)	68(2)	46(1)	0(1)	14(1)	-1(1)
S	126(2)	134(2)	83(2)	-3(2)	24(2)	—51(2)
N	139(6)	84(5)	72(4)	—15(5)	42(4)	—17(4)
C(1)	95(6)	66(5)	55(4)		21(4)	9(4)
C(2)	84(5)	70(5)	61(4)	5(4)	21(4)	
C(3)	99(6)	63(5)	38(4)	-1(4)	7(3)	-4(3)
C(4)	134(6)	83(6)	51(4)	22(5)	27(4)	5(4)
C(5)	158(8)	88(7)	74(5)	24(6)	39(5)	-10(5)
C(6)	161(9)	88(7)	66(5)	11(6)	23(6)	-20(5)
C(7)	201(9)	69(7)	49(4)	6(6)	19(5)	-21(4)
C(8)	113(6)	72(5)	41(3)	-2(4)	8(3)	6(3)
C(9)	138(7)	71(6)	49(4)	6(5)	8(4)	-4(4)
C(10)	148(8)	119(9)	75(5)	-25(7)	18(6)	-20(6)
C(11)	93(6)	68(5)	59(4)	-3(4)	25(4)	0(4)
C(12)	124(7)	139(8)	85(5)	44(7)	57(5)	-46(6)
C(13)	117(8)	175(10)	86(6)	-33(7)	49(6)	5(6)
C(14)	166(10)	169(12)	79(6)	68(8)	16(6)	30(7)
C(15)	197(12)	254(19)	134(9)	66(13)	-20(8)	-51(11)
C(16)	195(12)	106(9)	173(11)	6(8)	69(10)	-47(8)
C(17)	257(15)	211(16)	120(9)	41(11)	-29(9)	79(10)
C(18)	119(6)	74(6)	56(4)	5(4)	7(4)	2(4)
C(19)	173(9)	94(8)	84(6)	3(6)	8(6)	23(5)
C(20)	132(7)	102(7)	67(5)		49(5)	-22(5)
C(21)	146(9)	252(15)	106(7)	44(9)	86(7)	52(8)
C(22)	110(6)	106(7)	50(4)	-2(5)	12(4)	-1(4)
C(23)	196(9)	114(8)	62(5)	50(7)	13(5)	27(5)

TABELLE 5

INTERATOMARE ABSTÄNDE

Atome	Abstand (Å)	Atome	Abstand (Å)	
(a) Abstände vom	Palladiumatom			
Pd—P(1)	2.324(2)	Pd—P(2)	2.301(2)	
Pd—N	2,025(7)	Pd-C(1)	1.952(7)	
(b) Ethinyl-Ligand	1			
C(1)-C(2)	1.20(1)	C(6)C(7)	1.40(1)	
C(2)-C(3)	1.46(1)	C(7)C(8)	1.42(1)	
C(3)-C(4)	1.39(1)	C(8)C(3)	1.36(1)	
C(4)-C(5)	1.40(1)	C(8)-C(9)	1.42(1)	
C(5)-C(6)	1.35(1)	C(9)-C(10)	1.21(1)	
(c) Thiocyanato-C	iruppe			
N-C(11)	1.14(1)	C(11)-S	1.594(7)	
(d) Phosphinligand	len			
P(1)C(12)	1.84(1)	C(12)C(13)	1.62(2)	
P(1)C(14)	1.83(1)	C(14)-C(15)	1.47(3)	
P(1)C(16)	1.80(1)	C(16)-C(17)	1.48(3)	
P(2)-C(18)	1.82(1)	C(18)-C(19)	1.49(2)	
P(2)-C(20)	1.85(1)	C(20)-C(21)	1.57(2)	
P(2)-C(22)	1.84(1)	C(22)-C(23)	1.60(2)	
Mittelwert:	1.83	Mittelwert:	1.54	
	· · · · ·	· · · ·	······································	

TABELLE 6

VALENZWINKEL

Atome	Winkel (°)	Atome	Winkel (°)	
(a) Winkel am Palladium				
N-Pd-P(1)	88.0(2)	N-Pd-P(2)	93.7(2)	
NPdC(1)	178.1(3)	P(1)PdP(2)	177.1(1)	
P(1)PdC(1)	92.1(2)	P(2)-Pd-C(1)	86.2(2)	
(b) Ethinyl-Ligand				
Pd(C(1)C(2)	176(1)	C(1)C(2)C(3)	174(1)	
C(2)-C(3)-C(4)	119(1)	C(2)C(3)C(8)	120(1)	
C(3)-C(4)-C(5)	119(1)	C(4)-C(5)-C(6)	122(1)	
C(5)-C(6)-C(7)	119(1)	C(6)C(7)C(8)	120(1)	
C(3)C(8)C(7)	119(1)	C(3)-C(8)-C(9)	123(1)	
C(7)-C(8)-C(9)	118(1)	C(8)-C(9)-C(10)	177(1)	
(c) Thiocyanato-Gruppe				
Pd—N—C(11)	172(1)	N—C(11)—S	179(1)	
(d) Phosphin-Liganden				
PdP(1)C(12)	115(1)	Pd-P(1)-C(14)	113(1)	
Pd—P(1)—C(16)	111(1)	C(12)-P(1)-C(14)	107(1)	
C(12)-P(1)-C(16)	110(1)	C(14)-P(1)-C(16)	100(1)	
P(1)—C(12)—C(13)	111(1)	P(1)C(14)C(15)	114(2)	
P(1)—C(16)—C(17)	117(2)			
PdP(2)C(18)	115(1)	Pd-P(2)-C(20)	112(1)	
Pd-P(2)-C(22)	112(1)	C(18)-P(2)-C(20)	108(1)	
C(20)-P(2)-C(22)	106(1)	C(18)-P(2)-C(22)	105(1)	
P(2)C(18)C(18)	112(1)	P(2)-C(20)-C(21)	113(1)	
P(2)-C(22)-C(23)	111(1)		• •	

1.06 Å), Kohlenstoff (sp-hybridisiert, 0.69 Å) bzw. Stickstoff (sp-hybridisiert, 0.66 Å) addiert werden. Die auf diese Weise berechneten Einfachbindungsabstände sind in Tab. 2 mit den gemessenen Abständen verglichen. Es ergeben sich nur sehr geringe Verkürzungen bei den Pd-C und Pd-P-Bindungen, wie sie z.B.

TABELLE 7

LSQ-EBENEN, ABWEICHUNGEN (Å \times 10^-3) der atome von den ebenen und winkel zwischen den ebenen

Folgende Ebenen sind aufgeführt: I Koordinationsebene des Palladiums, II Benzolring

Die die jeweilige LSQ-Ebene definierenden Atome sind mit * markiert.

I		11			
Pd	6*	C(3)	2*	Winkel zwischen den	
P(1)	41 ⁺	C(4)	15*	Ebenen: 14.5°	
P(2)	4 1*	C(5)	-22*		
N	39*	C(6)	11*		
C(1)	-42*	C(7)	6*		
C(11).	194	C(8)	-12 [*]		
S		C(2)	65		
C(2)		C(1)	172		
C(3)	-295	C(9)	15		
		C(10)	—39		

auch bei ähnlich gebauten Platin—Acetylid—Phosphin-Komplexen beobachtet werden [12,13]. Für die Pd—N-Bindung ergibt sich eine Aufweitung von 0.06 Å (Tab. 2).

Da somit π -Bindungsanteile keine wesentliche Rolle spielen, beobachtet man für die CC-Dreifachbindung (1.20 Å) und CN-Dreifachbindung (1.14 Å) die reinen Mehrfachbindungsabstände (vgl. Acetylen, CC 1.20 Å; Methylisonitril, CN 1.16 Å [14]). Der C-S-Abstand im Thiocyanatliganden erreicht mit 1.59 Å einen ähnlichen Wert wie im Methylthiocyanat [14].

Zum o-Phenylenring bilden beide Acetylensubstituenten eine reine Einfachbindung aus (kovalente Einfachbindungsradien: $C(sp^2)$ 0.74, C(sp) 0.69 Å [14]). Der aromatische Sechsring ist eben (mittlerer C-C-Abstand 1.39 Å) und bildet mit der Palladiumkoordinationsebene einen Winkel von 14.5° aus.

Aus Festkörperinfrarotspektren wurde geschlossen [6], dass sich im festen Zustand intermolekulare Wasserstoffbindungen zwischen der Hydrogenacetylidgruppe des *o*-Diethinylbenzolliganden und dem Schwefelatom der am nächsten gelegenen NCS-Gruppe ausbilden. Diese Annahme wird durch die Strukturbestimmung bestätigt. Die y-Koordinaten des Wasserstoffatoms der Hydrogenacetylidgruppe berechnen sich zu: x = -0.112, y = 0.194, z = 0.558, wenn man einen C-H-Abstand von 1.09 Å zugrundelegt. Es ergibt sich dann ein H \cdots S-Abstand von 2.73 Å. In Fig. 5 ist diese Wasserstoffbindung schematisch dargestellt.

Dank

Wir danken der DFG für die Zurverfügungstellung eines rechnergesteuerten Einkristalldiffraktometers.

Literatur

- 1 M. Ohlinger, Dissertation, Universität Hamburg, 1966.
- 2 J. Kittsteiner, Dissertation, Universität Hamburg, 1971.
- 3 G. Wallenwein, Dissertation, Universität Hamburg, 1968.
- 4 J. Voss, Dissertation, Universität Hamburg, 1973.
- 5 J. Moritz, Dissertation, Universität Hamburg, 1973.
- 6 R. Nast und V. Pank, J. Organometal. Chem., 129 (1977) 265.
- 7 R. Nast, J. Voss und R. Kramolowsky, Chem. Ber., 108 (1975) 1511.
- 8 J. Kopf, K. Hoffmann und K. Hoffmann, Universität Hamburg, Unveröffentlichtes Programm, 1974.
- 9 J. Kopf, Universität Hamburg, Unveröffentlichtes Programm, 1975.
- 10 W.R. Busing, K.D. Martin und H.A. Levy, Report ORNL-TM-305, Oak Ridge, Tennessee.
- 11 P.M. Maithis, The Organic Chemistry of Palladium, Bd. I, Academic Press, New York, 1971, S. 88.
- 12 C.J. Cardin, D.J. Cardin, M.F. Lappert und K.W. Muir, J. Organometal. Chem., 60 (1973) C70.
- 13 W.H. Baddley, C. Panattoni, G. Bandoli, D.A. Clemente und U. Belluco, J. Amer. Chem. Soc., 93 (1971) 5590.
- 14 L.E. Sutton, Tables of Interatomic Distances and Configuration in Molecules and Ions, Suppl., Chem. Soc. Spec. Publ. No. 18, 1965.